Практические занятия чаще всего являются продолжением лекционных форм обучения и служат для осмысления и более глубокого изучения теоретических проблем, а также отработки навыков использования знаний. Практическое занятие даёт студенту возможность проверить, уточнить, систематизировать знания, овладеть терминологией и свободно его оперировать, научиться точно и доказательно выражать свои мысли на языке конкретной науки, анализировать факты, вести диалог, дискуссию, оппонировать. Практика призвана укреплять интерес студента к науке и научным исследованиям, научить связывать научно – теоретические положения с практической деятельностью[15].
На практических занятиях студенты проверяют, насколько тесно теория связана с практикой и осознают её необходимость для будущей профессиональной деятельности. По сути дела, практическое занятие и его результаты есть ничто иное как проявление принципа обратной связи на вузовском этапе профессиональной подготовки.
Преимущество практических занятий перед лекционными заключается в том, что здесь преподаватель имеет больше возможностей для индивидуальной работы со студентами. Контакт между преподавателем и студентами более тесен, чем при других организационных формах обучения [19].
Практические занятия занимают значительное место в обучении и важны для успешной работы в других видах учебной деятельности студентов по геометрии.
Для того, чтобы студенты быстрее и легче усвоили изучаемый материал, можно все задачи разбить на две основные темы: «Сложное отношение точек», «Полный четырехвершинник».
Первое практическое занятие по теме «Сложное отношение точек» предлагается провести с помощью методики коллективных способов обучения.
На практическом занятии при изучении данной темы преподаватель выбирает из задачника однотипные задания. Пять – семь пар таких заданий выписываются на карточках, и каждая карточка получает свой номер.
Таблица
Задание 1 Вычислить сложное отношение точек А) Б) |
Задание 2 Проверить лежат ли на одной прямой точки: А) Б) |
Предположим, что студент Иванов знает решение всех задач задания 1, а студент Петров –2. Тогда, работая в паре, они могут обменяться заданиями. Обмен осуществляется следующим образом: Иванов обучает Петрова решению задачи А) из задания 1, заново решая эту задачу. При этом если есть необходимость, он дает теоретическое объяснение и отвечает на все вопросы Петрова. Записывать решение задачи и все необходимые формулы он может прямо в тетрадь Петрова.
Затем таким же образом учит Петров, объясняя Иванов, как решается задача А) задания 2. Потом Петров приступает к самостоятельному решению задачи Б) из задания 1, а Иванов – к самостоятельному решению задачи Б) из задания 2. Проверив друг у друга правильность решения задач, напарники расходятся. На этом их работа в данной паре заканчивается, а каждый из них ищет себе нового напарника
Задачи и содержание ознакомления детей пятого года жизни с геометрическими фигурами
Задачи и содержание ознакомления детей пятого года жизни с геометрическими фигурами отражены в программах по дошкольному воспитанию и обучению детей. Согласно письму МОН "Про організацію та зміст навчально-виховного процесу в дошкільних навчальних закладах – від 06 червня 2005 року № 1/ 9 – 30 ...
Социальное познание: сущность понятия
Любое познание, в строгом смысле слова, является социальным, поскольку оно протекает в обществе. Следует отметить, что человек, являющийся субъектом познания, - существо социальное; на его познавательную деятельность воздействуют и социальные качества, и духовно-психологические состояния. Тем не ме ...
Анализ практики использования школьного сочинения как средства оценки
личности учителя
Для изучения оценочного аспекта отношения младших школьников к учителю мы изучили практику использования школьного сочинения как средства оценки личности учителя. Как оказалось, учителя редко обращаются к этому приему работы. Так, используется сочинение детей на тему «Моя учительница» и методику ко ...