Классические шкалы оценки знаний

Развитие образования » Оценка качества теста » Классические шкалы оценки знаний

Страница 4

В целом, метрики качества знаний при классическом подходе обоснованы статистической калибровкой методов по соответствующей популяции. Со времён создания IQ метрологическое обоснование измерений знаний проводится по распределениям баллов, вычисленных по соответствующему контингенту респондентов. Например, указываются средние значения IQ по возрастным, социальным или профессиональным группам. Однако из разницы IQ непонятно, какие принципиальные отличия в структуре знаний различают эти группы.

Item Response Theory

В качестве средства обеспечения содержательной корректности метрик качества знаний в 50-е годы была предложена и с начала 80-х годов стала популярной Item Response Theory – IRT.

В IRT предполагается, что получаемые баллы оказываются внешними проявлениями результатов действия неких ненаблюдаемых переменных — латентных параметров, и ставится задача оценить эти параметры по результатам выполненным измерениям.

Первоначальный вариант IRT связан с именем Г.Раша. В IRT результат измерения считается внешним проявлением латентной переменной, и ставится задача восстановить оценку латентной переменной по измерениям видимых переменных. Для -го испытуемого значение латентной переменной , обычно интерпретируемой как оценка готовности, и уровень трудности -го задания расположены на одной шкале, измеримы в сравнимых единицах, которые в этой теории называются логиты, и поэтому вычислима разность .

В IRT предполагается существование семейства функций вида

,

где — вероятность того, что -й испытуемый выполнит -е задание. Точный вид зависимости может меняться, в модели могут также могут дополнительные параметры. Таким образом, предполагается, что вероятность успеха зависит только от разницы между уровнем готовности и сложностью задания, при этом уровень готовности отдельных испытуемых и уровень сложности задания предполагаются независимыми как минимум в статистическом смысле.

При использовании логистической функции, можно определить вероятность успеха -го испытуемого при решении-го задания как

,

где k — некий масштабный множитель, который используется для согласования различных шкал и моделей, и соответствующие интегральные характеристики сложности заданий для -го испытуемого и готовности испытуемого к решению-го задания.

Часто вместо модели Раша используется модель Фергюссона, в которой вместо логистической функции используется функция нормального распределения, тогда для совместимости этих двух моделей в модели Раша используется коэффициент . Принято считать, что модель Раша позволяет отделить трудности заданий от готовности испытуемых, т. е. от субъективной сложности заданий.

Страницы: 1 2 3 4 5 6 7

Психолого-педагогические принципы развития продуктивного мышления школьников
В соответствии с требованиями, предъявляемыми современной школой, обучение в ней должно ориентироваться на развитие продуктивного, творческого мышления, обеспечивающего возможность самостоятельно приобретать новые знания, применять их в многообразных условиях окружающей действительности. Мы беремся ...

Методы воспитания
Для решения воспитательных задач можно выбирать разные сочетания методов, приемов и средств. Этот выбор прежде всего зависит от специфики поставленных целей и задач. Воспитатель выбирает и использует систему методов соответственно поставленным целям. Поскольку они являются «инструментами прикоснове ...

Выявление уровня сформированности навыков разговорной речи глухих учащихся первого класса
Выявление сформированности навыков разговорной речи у глухих первоклассников осуществлялось двумя способами: во-первых мы получили интересующую нас информацию из карты наблюдения и во-вторых в ходе выполнения задания. Использование карты наблюдения. На каждого ребенка поступающего в нашу школу, с п ...

Навигация

Copyright © 2025 - All Rights Reserved - www.creativeeducation.ru