Тематический план и методические рекомендации к проведению лекционных занятий

Развитие образования » Методические рекомендации к уроку "Сложное отношение точек. Полный четырехвершинник" » Тематический план и методические рекомендации к проведению лекционных занятий

Страница 5

Доказательство: , . Учитывая, что получим, что . Свойство доказано.

20:Сложное отношение точек меняет свое значение на обратное, при перестановке точек внутри одной пары: .

Доказательство: , . Свойство доказано.

30:

Если поменять местами точки внутри каждой пары, то сложное отношение не изменится: .

Доказательство: следует из свойства 20. . Свойство доказано.

40:.

Доказательства первого, второго и третьего свойства предложить студентам на самостоятельное изучение.

Замечание. Пусть на прямой заданы точки , тогда

1) тогда и только тогда, когда точки ,

2) тогда и только тогда, когда точки .

Теоремы о сложном отношении точек и прямых

Теорема 1. При любом проективном преобразовании плоскости сложное отношение четырех точек прямой сохраняется.

Доказательство. Пусть – проективное преобразование плоскости , прямая , ; точки переходят в отображении в точки . Как мы знаем, сужение есть проективное отображение . Это отображение вполне определяется упорядоченной парой реперов , где , . Если – координаты точки в репере , то эти же координаты имеет точка в репере . Но , . Теорема доказана.

Следствие. При любом проективном отображении одной прямой на другую сложное отношение четырех точек сохраняется.

Теорема 2.

Если биекция сохраняет сложное отношение любой четверки точек, то – проективное отображение.

Доказательство. Пусть – различные точки прямой и их образы в отображении . Существует единственной проективное отображение , которое переводит точки в точки соответственно.

Страницы: 1 2 3 4 5 6 7 8 9 10

Описание сущности педагогического опыта, условия его использования
В моей профессиональной деятельности мне очень повезло, последние годы я работаю с высокомотивированными, творчески одаренными коллегами и учащимися. В деятельности по созданию условий для развития детской одаренности я в процессе своей образовательной практики и с помощью определенных педагогическ ...

Методика работы над предупреждением и исправлением ошибок при написании сочинений и изложений
Ошибки в изложениях и сочинениях могут касаться как содержания и построения, так и языкового оформления. В содержательном плане замечаются такие нарушения, или ошибки: [5: 206] 1) непонимание идеи высказывания; 2) неправильное или неполное раскрытие темы; 3) фактическое несоответствие материала; 4) ...

Подписание Болонского соглашения
Фундамент для подписания Болонского соглашения был заложен Сорбонской декларацией, которую 25 мая 1998 года на юбилее Парижского университета подписали министры образования Франции, Германии, Италии и Великобритании. В "Совместной декларации о гармонизации структуры системы европейского высшег ...

Навигация

Copyright © 2024 - All Rights Reserved - www.creativeeducation.ru