Тематический план и методические рекомендации к проведению лекционных занятий

Развитие образования » Методические рекомендации к уроку "Сложное отношение точек. Полный четырехвершинник" » Тематический план и методические рекомендации к проведению лекционных занятий

Страница 5

Доказательство: , . Учитывая, что получим, что . Свойство доказано.

20:Сложное отношение точек меняет свое значение на обратное, при перестановке точек внутри одной пары: .

Доказательство: , . Свойство доказано.

30:

Если поменять местами точки внутри каждой пары, то сложное отношение не изменится: .

Доказательство: следует из свойства 20. . Свойство доказано.

40:.

Доказательства первого, второго и третьего свойства предложить студентам на самостоятельное изучение.

Замечание. Пусть на прямой заданы точки , тогда

1) тогда и только тогда, когда точки ,

2) тогда и только тогда, когда точки .

Теоремы о сложном отношении точек и прямых

Теорема 1. При любом проективном преобразовании плоскости сложное отношение четырех точек прямой сохраняется.

Доказательство. Пусть – проективное преобразование плоскости , прямая , ; точки переходят в отображении в точки . Как мы знаем, сужение есть проективное отображение . Это отображение вполне определяется упорядоченной парой реперов , где , . Если – координаты точки в репере , то эти же координаты имеет точка в репере . Но , . Теорема доказана.

Следствие. При любом проективном отображении одной прямой на другую сложное отношение четырех точек сохраняется.

Теорема 2.

Если биекция сохраняет сложное отношение любой четверки точек, то – проективное отображение.

Доказательство. Пусть – различные точки прямой и их образы в отображении . Существует единственной проективное отображение , которое переводит точки в точки соответственно.

Страницы: 1 2 3 4 5 6 7 8 9 10

Классификация творческих задач
В данном параграфе будут рассмотрены две классификации творческих задач по содержанию, по выполняемой деятельности учащимися, приведены примеры задач. Проведено соответствие между типом творческой задачи и типа урока, на котором целесообразнее его использовать. Неотъемлемой частью любого урока явля ...

Игра – ведущая деятельность детей дошкольного возраста
В дошкольном возрасте игра становится ведущим видом деятельности, но не потому, что современный ребенок, как правило, большую часть времени проводит в развлекающих его играх, – игра вызывает качественные изменения в психике ребенка. Настоящее игровое действие будет происходить только тогда, когда р ...

Особенности развития коммуникативной деятельности у детей с ОНР
Проблема изучения развития диалогической речи у детей не теряет своей актуальности в педагогике и психологии на протяжении многих лет, поскольку речь, являясь средством общения и орудием мышления, возникает и развивается в процессе общения. Потребность в общении возникает в онтогенезе очень рано и ...

Навигация

Copyright © 2025 - All Rights Reserved - www.creativeeducation.ru